Working with Regulators to Reveal the Value of Distributed Resources

The Regulatory Assistance Project

16 State Street Montpelier, Vermont 05602

Tel: 802.223.8199

Fax: 802.223.8172

www.rapmaine.org

177 Water St.

Gardiner, Maine

04345

Tel: 207.582.1135

Fax: 207.582.1176

Theme of RAP's DER Work

- Reveal the economic value of DER to:
 - -Customers
 - -Distribution Companies
 - -Wholesale Market Participants
 - -Regulators

Reveal the Value

- By:
- Getting Cost and Price signals right
- Getting regulatory incentives right DER value must realizable by the parties that can do something about it.
- Getting market rules/ structure right

RAP Has 3 NRELTasks PLUS

➤ NREL

- 1 Write and publish four papers directed to the regulators
- 2 Organize and deliver two regional regulatory workshops.
- 3 Organize and participate in national working group on model rule for emission performance standard for DR

➤ Other Forums

- ➤ NAESO
- ➤ RTO Futures
- ➤ Others

MM

Task 1 - Four Papers

- 1 Simplified distribution system costing methods
- 2 Develop system for de-averaged distribution credits for DR customer
- 3 Case studies for DR and reliability
- 4 Options to incorporate DR in wholesale markets

Distribution Costs Studies for Distributed Generation

The Regulatory Assistance Project

16 State Street Montpelier, Vermont 05602

Tel: 802.223.8199

Fax: 802.223.8172

www.rapmaine.org

177 Water St.

Gardiner, Maine

04345

Tel: 207.582.1135

Fax: 207.582.1176

ZWY

What We Looked At

- Distribution Plant
 - Lines & Feeders
 - Plant Invesment
 - O&M
 - Transformers & Substations
 - Plant Investment
 - O&M
- Embedded and Marginal
- FERC Form 1 Database 1994-1999

General Observations

- On Average Marginal Costs Are 135% of Embedded Costs
- Average Annual Investment of 124 Utilities
 - Lines & Feeders -- >\$5.6billion
 - Transformers & Substation-->\$800 million
- Costs Highly Dependent on Geographic Location Within Each Utility

Marginal vs. Embedded Costs

Lines & Feeders Plant Per MW of System Peak

		Lines & Feeders
		Plant Investment
Rank	Company	Per System Peak
1	New Hampshire Electric Cooperative, Inc.	\$732,359
2	Consolidated Edison Company of New York, Inc.	\$561,676
3	San Diego Gas & Electric Company	\$473,140
4	Commonwealth Electric Company	\$443,330
5	BANGOR HYDRO-ELECTRIC COMPANY	\$440,338
	Average	\$237,644
120	Ohio Power Company	\$108,150
121	Lockhart Power Company	\$102,673
122	Southwestern Public Service Company	\$91,505
123	Northwestern Public Service	\$88,950
124	Northern States Power Company (Wisconsin)	\$79,787
	Statistical Summary	
	Standard Deviation	\$100,906
	Average	\$237,644
	Correlation	0.89
	Average Plus Standard Deviation	\$338,551
	Average Less Standard Devation	\$136,738

Lines & Feeders Plant Per MW of System Peak

No Economies of Scale for Larger Utilities

Growth in Lines & Feeders Plant vs. Growth in System Peak

		Growth in Lines &
		Feeders Plant
		Investment Per
		Growth in System
Rank	Company	Peak
1	THE POTOMAC EDISON COMPANY	\$19,483,006
2	New Hampshire Electric Cooperative, Inc.	\$7,130,319
3	Central Vermont Public Service Corporation	\$6,474,471
4	Pennsylvania Electric Company	\$2,815,919
5	Upper Peninsula Power Company	\$1,902,999
	Average	\$608,215
107	Western Resources, Inc.	\$184,459
108	Entergy Mississippi, Inc.	\$174,603
109	Toledo Edison Company, The	\$163,059
110	Kansas Gas and Electric Company	\$155,231
111	Entergy Arkansas, Inc.	\$108,886
	Statistical Summary†	
	Standard Deviation	\$447,964
	Average	\$589,524
	Correlation	0.83
	Average Plus Standard Deviation	\$1,037,488
	Average Less Standard Devation	\$141,559

No Economies of Scale For Faster Growing Utilities

Distribution of Marginal Costs: Lines & Feeders Per MW

An Eastern High Cost Utility: PP&L

Value of Project Deferring DR (\$/kW)								
Company	PP	&L, Inc.						
Marginal	Trans. & Subst.		Lines & Feeders					
\$/MW		\$52,816		\$389,084		\$91,788		\$2,823,156
Deferral	Case			Case				
Years		Low	High		Low		High	
1	\$	6.40	\$	47.16	\$	11.13	\$	342.20
5	\$	26.42	\$	194.62	\$	45.92	\$	1,412.15
10	\$	40.84	\$	300.89	\$	70.99	\$	2,183.21
15	\$	48.45	\$	356.93	\$	84.21	\$	2,589.84
25	\$	54.23	\$	399.50	\$	94.26	\$	2,898.71
30	\$	55.08	\$	405.77	\$	95.74	\$	2,944.26

A Eastern Low Cost Utility: Atlantic City Electric Company

Value of Project Deferring DR (\$/kW)								
Company Atlantic City Electric Company								
Marginal	Trans. & Subst.		Lines & Feeders					
\$/MW		\$7,861		\$57,908		\$16,659		\$512,372
Deferral	Case			Case				
Years		Low		High		Low		High
1	\$	0.95	\$	7.02	\$	2.02	\$	62.11
5	\$	3.93	\$	28.97	\$	8.34	\$	256.30
10	\$	6.08	\$	44.78	\$	12.90	\$	396.25
15	\$	7.22	\$	53.13	\$	15.31	\$	470.05
25	\$	8.08	\$	59.46	\$	17.14	\$	526.12

60.40

8.20

17.41

534.38

Summary

- High Variability of Costs Among Utilities
- High Variability of Costs Within Utilities
- Most New Investment is in Lines & Feeders
- Significant Dollars At Stake
 - For 124 Utilities over \$6.4 Billion Invested Per Year
 - Equals Approximately \$1.2 Billion in Revenue Requirements *Increase* Per Year
- Significant Opportunities for DR Options

Distributed Resource Distribution Credits

The Regulatory Assistance Project

16 State Street Montpelier, Vermont 05602

Tel: 802.223.8199

Fax: 802.223.8172

www.rapmaine.org

177 Water St.

Gardiner, Maine

04345

Tel: 207.582.1135

Fax: 207.582.1176

Distribution Costs

- Distribution costs vary greatly
 - Marginal costs range from 0 to 20 cents per kWh
- → High cost areas can be urban or rural
- Approximately 5% of a distribution system is "high cost" at any time

MM

Pricing

- → Geographically deaveraging prices is probably not the answer
- →Prices would range from 0 to 20 cents per kWh
- Neighbors would see widely different prices
- → equity and other customer acceptance issues would be large

Distribution Credits

- Offering distribution credits can send the same price signals with much less risk
- Credits can focus on customer and vendor actions
- Credits can be limited to "qualifying DR"
- Can use standard payments and/or bidding

Qualifying DR

- **对Types**
- Operating and performance standards
- Installation time and milestones
- Min/Max amounts
- Duration

My

Emissions Comparison

Demand Response, Distributed Resources, and Reliability

The Regulatory Assistance Project

16 State Street Montpelier, Vermont 05602

Tel: 802.223.8199

Fax: 802.223.8172

www.rapmaine.org

177 Water St.

Gardiner, Maine

04345

Tel: 207.582.1135

Fax: 207.582.1176

Demand Response Contributes

- → Make Markets Work

 Ma
- → Efficient Use of Capital
- → Reduce Costs
- → Reduce Market Volatility
- → Reduce Emissions (Sometimes)
- →Provide System Operator Options
- **BIG FACTOR IN RELIABILITY**

How Demand Response Works

- → Traditional Approaches
 - time of use rates, seasonal pricing
 - •isolate from the grid with local gen.
- ¬Real-time Market Approaches
 - programmed appliances
 - Internet-based bidding
- ¬Reveals The Real Electricity Demand Curve

Modest Participation Big Impact

- → EPRI: 10% participation of demand response would have reduced peak prices 33 66% in Midwest in 1998.
- NYMEX: 5% would have reduced prices 80-90%
- →EPRI: In California in 2000, 1% reduction in load >> 10% reduction in peak prices, 5% reduces peak prices 19%

Demand Response Saves Everyone Money

Efficient Reliability Menu

- Demand Side Bidding
- Multi-settlement Markets
- Ancillary Svcs in Demand Market
- → Efficient Reliability Standard
- →Poolwide Uplift Charges for Efficient Technologies

Efficient Reliability Standard

Before "socializing" costs of a proposed reliability-enhancing investment through tariff, uplift, or other cost-sharing requirement, FERC, the state PUC, and the relevant RTO should first require a finding:

- (1) that the relevant market is fully open to demand-side as well as supply-side resources;
- (2) that the proposed investment or standard is the lowest cost reasonably-available means to correct a remaining market fail
- (3) that benefits from the investment or standard will be widespread, and thus appropriate for support through broad-based funding.

Distributed Resources Emissions Collaborative

The Regulatory Assistance Project

16 State Street Montpelier, Vermont 05602

Tel: 802.223.8199

Fax: 802.223.8172

www.rapmaine.org

177 Water St.

Gardiner, Maine

04345

Tel: 207.582.1135

Fax: 207.582.1176

My

Purpose

- Recognize the role of DR in existing and restructured electricity markets
- Collaborate to develop model emissions standards for distributed generation

MM

Purpose

- What concerns are being addressed?
 - Environmental protection with technology and industry changes
 - Promoting clean DR
 - Also, renewables and energy efficiency
 - Administrative simplicity
 - Promoting certification of small engines at clean standards

MM

DG Challenges

- Establish a technology-neutral, technology-forcing emissions standard
 - Output-based emissions standards (lbs/MWh)
- Monitor increased use of back-up generators
- Coordinate air regulations
- Establish standards for small sources
- Factor in positive externalities, e.g., CHP

Principles

- The model emissions standards should:
 - Lead to improved air quality, or at least do no additional harm
 - Be technology-neutral and fuel-neutral, to the extent possible
 - Develop output-based emissions standards
 - Address issues surrounding existing vs. new DR

M

Principles

- The model emissions standards should:
 - Promote technological improvements in efficiency and emissions output
 - Encourage the use of non-emitting resources
 - e.g., wind, PV, direct conversion fuel cells
 - Account for the benefits of CHP and the use of otherwise flared gases
 - Be easy to administer
 - Facilitate the development, siting, and efficient use of DR

Emissions Comparison

My

Emissions Comparison

MM

Applicability

- What type of sources should be covered?
- What size engines should be addressed?
 (not covered by NSR or state BACT)
 - limit by tons, kW, hours of operation?
 - Less than 1 MW, 500 kW, 200 kW, 50 kW?
- What functions should be covered? (general use, emergency, limited)

Applicability

- Establish "appropriate" emissions standards
 - Better than grid average, as good as new BACT for large combined cycle sources?

Current Directions

- Differentiation by:
 - Hours of operation (emergency, peak, baseload)
 - Attainment, non-attainment
 - Implementation date -- a "glide path" over time to enable manufacturers to improve products
- First draft by the end of the summer
 - Disseminated broadly for public comment

Conclusions

- Significant Dollars At Stake
 - For 124 Utilities over \$6.4 Billion Invested Per Year
 - Equals Approximately \$1.2 Billion in Revenue
 Requirements *Increase* Per Year
- Significant Opportunities for DR Options